Odd graph and its applications to the strong edge coloring

نویسندگان

  • Tao Wang
  • Xiaodan Zhao
چکیده

A strong edge coloring of a graph is a proper edge coloring in which every color class is an induced matching. The strong chromatic index χspGq of a graph G is the minimum number of colors in a strong edge coloring of G. Let ∆ ě 4 be an integer. In this note, we study the properties of the odd graphs, and show that every planar graph with maximum degree at most ∆ and girth at least 10∆ ́ 4 has a strong edge coloring using 2∆ ́ 1 colors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring

All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

A Strong Edge-Coloring of Graphs with Maximum Degree 4 Using 22 Colors

In 1985, Erdős and Neśetril conjectured that the strong edge-coloring number of a graph is bounded above by 4 ∆ 2 when ∆ is even and 1 4 (5∆ 2 − 2∆ + 1) when ∆ is odd. They gave a simple construction which requires this many colors. The conjecture has been verified for ∆ ≤ 3. For ∆ = 4, the conjectured bound is 20. Previously, the best known upper bound was 23 due to Horak. In this paper we giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 325  شماره 

صفحات  -

تاریخ انتشار 2018